Non-closed Curves in R with Finite Total First Curvature Arising from the Solutions of an Ode
نویسندگان
چکیده
The solution space of a constant coefficient ODE gives rise to a natural real analytic curve in Euclidean space. We give necessary and sufficient conditions on the ODE to ensure that this curve is a proper embedding of infinite length or has finite total first curvature. If all the roots of the associated characteristic polynomial are simple, we give a uniform upper bound for the total first curvature and show the optimal uniform upper bound must grow at least linearly with the order n of the ODE. We then examine the case where multiple roots are permitted. We present several examples illustrating that a curve can have finite total first curvature for positive/negative time and infinite total first curvature for negative/positive time as well as illustrating that other possibilities may occur.
منابع مشابه
On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملHyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کاملA Contact Problem of an Elastic Layer Compressed by Two Punches of Different Radii
The elasticity mixed boundary values problems dealing with half-space contact are generally well resolved. A large number of these solutions are obtained by using the integral transformation method and methods based the integral equations. However, the problems of finite layer thicknesses are less investigated, despite their practical interests. This study resolves a quasi-stationary problem of...
متن کامل